
Bosonization of Fermi systems in arbitrary dimension in terms of gauge forms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 1169

(http://iopscience.iop.org/0305-4470/28/5/008)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A. Math. Gen. 28 (1995) 1169-1203. Prinied in the UK 

Bosonization of Fermi systems in arbitrary dimension in 
terms of gauge forms 

J Frohlicht, R Gotschmanntt and P A Marchettigll 
t Theoretical Physics, ETH-Htinggerbefg, CH-8093 Ziirich, Switzerland 
$ Institut de Physique Theorique. Univenit€ de Fribourg, CH-I700 Fribourg, Switzerland 
§ Dipartimento di Fisica, Universita di Padova and I N M  Sezione di Padova 1-35131. Italy 

Received 14 November 1994 

Abstract. We present a general method to bosonize systems of fermions with infinitely many 
degrees of freedom in particular systems of non-relativistic e l e m n s  at positive density, by 
expressing the quantized conserved elecuie charge- and current density in terms of a bosonic 
antisymmetric tensor field of rank d - 1, where d is the dimension of space. This enables us 
to make concepls and tools from gauge theory available for the purpose of analysing electronic 
s m c t ~ r e  of non-relativistic matter. We apply our bosoniration identities and concepts from 
gauge theory, such as the Wegner-'t Hooft duality. to a variety of systems of condensed matter 
physics: Landau-Fermi liquids. Hall fluids, London superconductors, etc. Among our results 
me an exact formula for the plasmon gap in a metal, a simple derivation of the Andenon- 
Higgs mechanism in superconductors, and an analysis of the orthogonality wtvlrophe for static 
sources. 

1. Introduction and summary of main results 

In this paper, we develop a conceptual framework, based on bosonization of quantum 
systems with infinitely many degrees of freedom, which we expect to be useful in attempts 
to classify states of non-relativistic matter at very low temperatures. In this paper, we focus 
our attention on the analysis of electronic structure. Magnetic properties will be discussed 
in a separate paper. 

The basic ideas underlying our approach are very simple: our starting point is to study 
the response of a quantum system of charged particles to perturbations by external electro- 
magnetic fields. Thus we couple the electric current density to an arbitrary, smooth external 
electromagnetic vector potential. A, and then attempt to calculate the partition function, 
=(A), of the system as a functional of A. 

Of course, this is a very complicated task. However, in order to classify electronic 
structure of non-relativistic matter, we are really only interested in understanding the 
behaviour of the &%ctive action 

S ( A )  -3 In Z(A) (1.1) 

on very large distance scales and at very low frequencies. We thus study families of systems 
confined to ever larger cubes, S2h := (z : E Q}, in physical space Rd. d = 1,2,3 where 

11 Supponed in part by MPI. This work is carried oul in the framework of the European Community Research 
Programme 'Gauge theories. applied supersymmetry and quantum gravity' with a financial contribution under 
contract SCI-CT92-D789. 
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i2 is a fixed cube in Rd and I < A c 00 is a scale parameter. We keep the particle density, 
p. and the temperature T ( x  0) constant. We then couple the electric current density of the 
system confined to Qh to a vector potential A@’ given by 

where A is an arbitrary , but A-independent vector potential on space-time R x S2. We then 
study the behaviour of SnL(A(”) when A becomes large. 

More precisely, we attempt to expand SnA(A(*)) in powers of A-’ around A = CO (to a 
finite order) and define the scaling limit, S*(A), of the effective action to be the coefficient 
ofrhe leading power of A in that expansion, (in the limit when QA /1 Ed); see [I]. 

One of our main contentions in this paper is the conjecture that S*(A) is quadratic 
in A ,  for all systems of non-relativistic electrons at positive density. This conjecture can 
be verified for several systems, in particular for insulators, Landau Fermi liquids, metals, 
(incompressible) quantum Hall fluids, superconductors. 

Remark. It is also interesting to study the response of systems of condensed matter to 
coupling the spin current to an external SU(2)  non-Abelian gauge field, W. One may then 
try to determine the scaling limit of the effective action of such systems a s  a functional of 
W. It is a simple consequence of SU(2)  gaugeinvariance that S*(W) is not quadratic in 
W. For a special class of systems, S’(W) has been calculated in [l], and the results in that 
paper confirm our claim. 

We do not know a proof of the conjecture described above that covers all imaginable 
systems. We thus rely on a case-by-case analysis. The details of our analysis will appear 
in separate papers [Z]. At this point it should be emphasized that, except in the case of 
insulators and incompressible quantum Hall fluids, the proof of the conjecture is never trivial 
and does not simply follow from dimensional analysis. 

It is well know that S(A) is the generating functional of connected Green functions of 
the electric current density and that it is gauge-invariant, i.e. 

S(A  + d x )  = S(A) ( 1.2) 

where x is an arbitrary real function and d x  is its gradient?. Clearly, gauge-invariance 
persists up on passing to the scaling limit. Using our conjecture, we conclude that 

s s  S’(A) = ?(A ,  I n*A)  = 4 dd+’x d“’y A P ( ~ ) i 7 ” ” ( x  - y)A,(y) (1.3) 

where, for x # y ,  iTl””(x - y) is given by the scaling limit of the two-current Green 
function ( ~ ( . ~ ( x ) ~ ~ ( y ) ) r .  

By gauge invariance, or, equivalently, current conservation 

a P rp” = a,n*P” = 0, (1.4 

Furthermore, il”” inherits all the symmetries of the system: (in (1.3). we have assumed 
translation invariance). Thus, classifying electronic structure of a system reduces, in the 

We shall use the notation and elementary concepts of Cwan’s exterior calculus throughout this paper. 
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scaling limit and under the assumption that our conjecture holds, to a classification of 
'vacuum polarisation tensors', IT*'", satisfying (1.4) and having certain symmetries. This 
is a straightforward task; see section 5. 

In principle, essentially all information concerning electronic properties of a system can 
be retrieved from its effective action S(A)  by fairly straightforward calculations. However, 
in order to evoke and then apply analogies with other physical systems, in particular with 
gauge theories of elementary particle physics, it is useful to embark on a detour. The detour 
chosen in this paper is bosonization. The idea (see [3]) is as follows: since the electric 
current density J = (P)& is conserved, it can be derived from a 'potential' 

(1.5) p = ~ E w i " ' w a  b 
11, P Y " M  

where E is the totally antisymmetric s-tensor and bw,...,M is an antisymmetric tensor field 
of rank d - 1 .  In the language of differential forms, equation (1.5) is expressed as 

J = 'db (1.6) 

where * is the Hodge * operation and d denotes exterior differentiation. The 'potential' 
b of the current density is determined by (1.6) only up to the exterior derivation of an 
antisymmetric tensor field of rank d - 2, (a (d - ?.)-form). Thus b is what one calls a 
'gauge form'. 

For one-dimensional systems, b is a scalar and is determined by (1.6) up to a constant. 
In two dimensions, b is a 1-form determined by J up to the exterior derivative of an 
arbitrary 0-form. 

The basic idea is then to deduce an effective field theory for the field b from S(A) .  This 
field theory is described in terms of an action &b). Choosing-units in which R = 1 and 
using an imaginary-time (Euclidean) formulation, S(b) is obtained from S(A)  by functional 
Fourier transformation 

where N is a (divergent) normalization factor (proportional to the volume of the Lie algebra 
of U (  1)-gauge transformations). Gauge invariance implies that 

S(b + dA) = S(b) (1.8) 

for an arbitrary (d - 2)-form A (d 2 2). 
Our conjecture then implies that the low-wavevector, low-energy modes of the bosonic 

field b are non-interacting, i.e. the scaling limit of the system described in terms of the 
b-field has a quadratic action, S*(b), whose form is constrained by its gauge invariance, 
equation (1.8), and by the symmetries of the system. 

Essentially all quantities of interest in the original system can be expressed in terms of 
quantities referring to the b-field. For example. current Green functions (at imaginary time) 
are given by expectations of products of the 'field strength' db in the functional measure 

8-1 e-s(b)Z)b 

The Green functions of electron creation and annihilation operators turn out to be 
proportional to expectations of disorder operators of the dual theory formulated in terms 
of the b-field. 
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If C is an open subset of physical space, and Qx denotes the operator measuring the 
total electric charge inside C then 

exp(ior&) m exp ior (1.9) ( k) 
i.e. the charge operator can be reconstructed from operators analogous to the Wilson loops 
of gauge theory. The operators in (1.9) are dual to the disorder operators describing electron 
creation and annihilation, in the sense of the Wegner-’t Hooft duality, [4,5]. This suggests 
that we can carry over the consequences of the ’t Hooft duality from gauge theory to 
condensed matter physics. As a consequence we mention that if, at zero temperature, the 
total electric charge operator, Q = ‘ lim,,.r Qr’ is well defined on the Hilbert space. of 
all physical states of the system then disorder Green functions, e.g. the Green function of 
an electron creation and annihilation operator, exhibit strong spatial cluster decomposition 
properties, and vice versa. This applies to insulators, incompressible Hall fluids and 
superconductors with (unscreened) Coulomb two-body repulsion. Furthermore, if the field 
b couples the ground state of the system to a massless quasiparticle then the total charge 
operator does not exist, because charge fluctuations are divergent in the thermodynamic 
limit, as in metals and massless superconductors. 

For two-dimensional systems, both, A and b, are 1-forms defined up to gradients of 
scalar functions. In this case, equation (1.7) enables us to define a concept of duality: a 
system 1 and a system 2 are dual to each other iff 

s ; m  s;. (1.10) 

It turns out that, in the sense of (l.lO), a hvo-dimensional insulator is dual to a two- 
dimensional London superconductor, a metal to a ‘semi-conductor’, and an incompressible 
Laughin Hall fluid is se(f-dual. 

Besides the duality expressed in (1.7) and (1.10) there is also a concept of Kramets- 
Wannier duality: in any dimension d ,~a  U(l)-gauge theory of an antisymmetric tensor field, 
b, of rank d - 1 is ‘Kramers-Wannier-dual’ to a scalar field theory. Thus, for example, a 
London superconductor; corrected by dynamical Abrikosov vortices, is Kramers-Wannier 
dual to a Landau-Ginsburg superconductor; see [l]. 

The two concepts of duality sketched here are conceptually quite clarifying and useful 
in a classification of electronic properties of non-relativistic matter. One of the principal 
advantages of reformulating the theory of a system of electrons in terms of the tensor 
field b (bosonization) is that this formulation is convenient to explore systems obtained 
by perturbing a given one by two-body interactions. A translation-invariant two-body 
interaction, Ipm. has the form 

Zpm = / dd”x 1 dd+’y .P(x)V,,(x - y ) J ” ( y ) .  

J , J  

(1.11) 

After bosonization, the action of the perturbed system is given by 

&(b) = S(b) + dd+’x dd+’y (‘db)’(x)V,,(x - y)(*db)”(y)  (1.12) 

where S(b) is the action of the unperturbed system. Note that, expressed in terms of the 
field b the two-body interaction Zpen is quadratic (rather than quartic)! A conventional two- 
body interaction described by an istantaneous two-body potential corresponds to a kernel 
V,, given by 

(1.13) V,dx - Y )  = 6,0&oV(a: - Y)8(X0 - YO) 
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with x = (x', z), y = ( y o ,  y). 
Suppose now that the action of the perturbed system in the scaling limit (scale parameter 

A -+ CO), skI, is given by the scaling limit, p, of the action of the unperturbed system, 
perturbed by the long-range tail, I&, of the two-body interaction IF From our conjecture, 
we infer that is quadratic 
in b, too, and, by (1.8) and (1.12), gaugeinvariant. It IS given by 

is quadratic in b, and hence, since I' is quadratic in b, gn 

$I - s' +h"Z& (A -+ CO) (1.14) 

for some exponent K 2 0. It is plausible that the assumption that perturbation by Z and 
passage to the scaling limit are commuting operations is justified if V,,  is positive-definite, 
of very long range and the 'Cooper channel' is turned off. In this case, ow analysis yields 
the 'random phase approximation' (RPA). We apply these ideas to the following systems. 

(i) A metal perturbed by repulsive two-body Coulomb interactions. In this case we obtain 
the exact formula for the plasmon gap. 
(ii) A massless London superconductor perturbed by repulsive two-body Coulomb 
interactions. In this example we recover a precise formulation of the Anderson-Higgs 
mechanism. 
(iii) A Landau-Fermi liquid perturbed by repulsive two-body interactions, in the presence of 
a static'source. For a two-dimensional system of this type with Coulomb-AmpBre interaction 
w e  discuss a possible cross over to a non-Fermi liquid behaviour (the 'Luttinger liquid'). 

We conclude this introduction with a brief summary of the contents of this paper. 
In section 2, we derive our general bosonization method, based on equations (1.2), (1.6), 

(1.7) and (1.8), and present the main identities it provides. 
In section 3, we introduce disorderfields of the bosonized theory and the local electric 

charge operafors Qx. We then explain the connection between disorder fields and electron 
creation- and annihilation operators. We recall what is meant by 't Hooft duality and discuss 
its implications. 

As an application of the general theory developed in sections 2 and 3 we briefly discuss 
in section 4 systems of relativistic massless fermions in one space dimension. In this case, 
we recover the standard identities of one-dimensional, Abelian bosonization. In condensed 
matter physics, these systems describe Landau and Luttinger Fermi liquids and can be 
studied using techniques from chiral U(l)-current algebra. 

In one dimension, it is not hard to extend our methods to an analysis of magnetic 
properties. This is done by coupling the spin degrees of freedom of the electrons to 
external non-Abelian gauge fields with gauge group given by SU(2), see [l]. Applying 
our bosonization methods to this special case, we would recover the formulae of non- 
Abelian bosonization and of SU(2)-cu1~ent algebra, but we shall not present these results 
(which actually have just appeared in a recent preprint by Burgess and Quevedo [6]). 

In section 5 ,  we apply our methods to systems from condensed matter physics. 
We consider Landau-Fermi (non-interacting electron) liquids, in which case we show 
how to derive the Luther-Haldane bosonization formulae from our methods, insulators, 
incompressible Hall fluids (Laughlin fluids), and massless London superconductors. We 
then discuss duality, in the sense of equation (].IO), for two-dimensional systems and 
conclude with an analysis of Laughlin fluids. 

In section 6, we consider perturbations of the systems discussed in section 5 by 
repulsive Coulomb(-AmpBre) two-body interactions, along the lines sketched in equations 
(1.11)-(1.14). We find the exact expression for the plasmon gap in a metal, recover 
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the consequences of the Anderson-Higgs mechanism in a precise form and discuss the 
'orthogonality catastrophe' for static sources. 

In the appendix, we outline the theory of gauge forms, of which the potential b of the 
conserved electric current density J (see equations (1.5) and (1.6)) is a special case. 

2. Bosonization 

In this section we present the details of our method of bosonization. 

Grassmann fields Ye, Y:, 01 = 1, . . . , 2 S  + 1. 

and their derivatives and invariant under the global U(l)-gauge tranformations 

In the Euclidean path-integral formalism, fermions of spin S are described in terms of 

We consider a system of fermions whose Euclidean action, I ( @ ,  Y*), is local in I, @' 

~ ~ ( x )  + e'"Ya(x) Y;(X) + e-ih Ya(x) * A ER. (2.1) 

We couple the system to a U(I)-gauge field, A,, by replacing derivatives by covariant 
derivatives, thus gauging the symmetry (2.1). Let I(Y,  Y*, A )  denote the corresponding 
gauge-invariant action. We define the effective action, S(A) ,  of the system by setting 

(2.2) e-S(A) ~ ~ \ l r  z)** e-J(*.*'.A) J 

- -1 
Let j be a 1-form. The Fourier tfihsform of (2.2) is given by the following equation: 

= DA exp i (A,(x) j l L ( x )  d"+')x) . (2.3) ( S  1 
Using the invariance of I ( Y ,  Y*, A )  under the gauge transformation 

AJX) --f A J X )  - a , w  (2.4) 

one can integrate the r.h.s. of (2.3) over all gauge transformations (2.4). We then obtain 
ihe constraint 

a,jP(x) = 0 (2.5) 

i.e. a continuity equation for j .  In order to simplify the notation it is useful to introduce 
the concept of differential forms. 

Given an antisymmetric tensor field of rank k on M, 
one defines locally the associated differential form of rank k, or simply k-form, by setting 

d k ) ( x )  = - ~ , , . . . ~ ~ ( x ) d x ~ '  A . .  . ~ d d " '  (2.6) 

where A is the wedge (antisymmetric tensor) product. The space of k-forms is a group, 
Ak(M),  under the operation of pointwise addition. We denote by d : A X ( M )  + 
A'+'(M) the exterior differential, by * : A x ( M )  + ~ l ~ + l - ~ ( M )  the Hodge star, by S = 
*d*(-l)(d+')(k+')+' the codifferential and by &(M) = ker(drAk(M))/im(dTAX-I(M)) 
the kth (de-Rham) cohomology group of M (see, for example, [9] for details). 

Let M be an open subset of 

1 
k! 
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An inner product between k-forms is defined by setting 
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x ap,.. .p,(x)bp""p~(x) = a") A 'b") . (2.7) s ( a ( k )  b(k)) = , ddfl s 
and its satisfies 

(,(a, db(k-0) = (&,(U, b(k-1)). (2.8) 

Then, according to the Poincark lemma, equation (2.5) can be explicitly solved by 
introducing a (d - I)-form b with 

I 
j =  -. *db (2.9) 2n 

where the factor & has been inserted for later convenience. For d > 1, the solution, b, 
of (2.9) is not unique, since two forms,, b, b', differing by a term dh"-') yields the same 
j ,  thanks to the property d2 = 0. As a consequence, the action s ( j )  = .?(db) of (2.3y is 
invariant under the gauge transformation 

b 3 b i- dh(d-2) . (2.10) 

Remark 2.1. Equation (2.10) is the action of the gauge group C2-2, on the space of 
generalized connections Ad-', with A(d-') globally defined because f f&'(M) = 0 (see 
appendix). Thus b should be viewed as a gauge form of rank d - 1 which is globally 
defined because H&(M) = 0. 

(For later purposes, we use a notation, i (db ) ,  slightly different from the one adopted 
in the introduction, i.e. .?(b).) 

In terms of the (d - I)-form 6 ,  we may rewrite (2.3) as 

= / D[A]' e-S(A) exp (-& / A A db)  (2.1 1) 

where D[A]e-S(A)(.) denotes the measure induced by DAe-S(A) on the space of gauge orbits 

(2.12) [A] = (A': A -A' = d A ] .  

Next, we wish to prove a set of bosonization identities. Let D [ b ] e ~ ~ ( ~ ~ )  denote the 
measure on the gauge equivalence classes 

[b] = (b' : b' = b + dh(d-2']. (2.13) 

Formally, 
(1) 

Let 

(2.15) 
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so that .F(q, q*. 0) E P(q.  Y*) is &e (I(l)-current of the fermion system corresponding 
to the global symmetry (2.1). 

Then, for non-coinciding points {xr, . . . , xpl} ,  we have that 
(2) 

(P'(@, Y*: xl)"'Jp"(Y, w*:x,)) 

(2.16) 

Proof. Assuming one can interchange the order of integration we have, formally, that 
(1) 

/ D[b] e-"") =. D[b] D[A] DY, DY* e-f(*Y.**.A)exp (& 1 A A & )  s s s  
= / D ( A ]  /"D@DY* e-f(*.**,A1g(dA) 

(2.11) 

Integrating by parts, we obtain that 
(2) 
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Our explicit calculation, equation (2.18), shows that identity (2.16) also holds at 
coinciding points if the current correlation functions in the fermion theory are defined 
by 

Remark 2.2. With the definition (2.19) the current correlation functions are transversal 
in the fermionic theory: by gauge invariance of S(A) ,  we have that for an arbitrary test 
function x 

(2.20) 

and, differentiating (2.20) with respect to a and sening a to 0, we conclude that 

= \dd+lx. g X ( x , ) ( J " ( Y , ~ * ; x ~ ) . . . g f i " ( Y , ~ * ; x ~ ) )  = o .  (2.21) 

Note that if Z(W, '4, A )  is linear in, e.g. the component AQ, then the definition o f~JQ 
through (2.19) coincides with the one given in (2.15). 

Remark 2.3. Instead of using measures on gauge equivalence classes for A and b in (2.1 I), 
(2.14), one can add to the actions S(A) and s(db), for d > 1, the standard gauge fixing 
and Faddeev-Popov terms. For gauge forms of rank k > 1, this involves a tower of gauge 
fixings and ghosts, as explained in [I 11, for example. 

In summary, equation (2.14) expresses the partition function of our theory, originally 
formulated in terms of the fermionic field Y. as the partition function of the bosonic gauge 
form b.  

Equation (2.16) proves that the correlation functions of the physical current of the 
fermionic theory, J"(q, Y*), are given by the correlation function of the dual of the 
curvature, or 'field strength', ('db)", of the gauge form b. This result has some interesting 
applications. We consider a system with an action Ztot('4, '4*) given by a perturbation of 
I('4, Y') by a current-current interaction, in the form of a term, Iw(Y, '43, given by 

~ Z p t ( ' 4 ,  Y*) = 4 V&, Y ) J W >  '4*; n)J"(Y. '4*; y) 

(2.22) 

s 
= ; (JW, Y*), VJ( '4 ,  **I). 

This perturbation, quartic in the '4 field, becomes quadratic in the b field. In fact, adopting 
the definition (2.19), we obtain, for the partition function E(V) of the perturbed theory, the 



(2.23) 

Clearly, these somewhat abstract identities become useful only if S(db)  has a tractable 
form. In particular, if S(A) is quadratic, the perturbed theory has an action that is still 
quadratic in b. In later sections, we briefly discuss some systems where this appealing 
situation is encountered, i.e. where S(A) is quadratic in A: massless relativistic fermions in 
one dimension, the 'scaling limit' of finite-censity, non-relativisiic free fermions in arbitrary 
dimensions, the 'scaling limit' of the bulk effective action of an incompressible quantum 
Hall fluid, or an insulator. 

3. Disorder fields and fermion correlation functions 

In section 2 we have reformulated a fermionic theory with global U(l)-gauge invariance as 
a gauge theory (for d > 1) of gauge forms of rank d - 1. 

Here we wish to discuss the question how correlation functions of the field Y and Y* 
can be expressed in the bosonic theory. A general result is that they involve a disorder field 
conjugate to the gauge form b. We first propose a definition of disorder fields for gauge 
forms in general terms, 

Let us denote by S(db)  the action of a gauge theory of (d - I)-forms in M = Rddfl. 
We choose n points x = 1x1, . . . , xn) in JRddfl and define 

Mh.=Rd*d+l\(xd+l,.. . ,xn]. (3.1) 

Since H&(Md # 0 gauge forms 6 whose curvature f(6) belongs to a non-trivial 
cohomology class in H&(M2) are not globally defined on M, - (see the appendix). 

We choose n non-zero integers, q - = [ q ~ ,  . . . , qJ,  satisfying ELI qi = 0 and define the 
closed d-form 
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S(xi - z ) .  One easily checks that, for every closed d-dimensional surface S(d) with 8, 
in M2. 

More precisely, for a (d + 1)-dimensional ball, B', in Rd*' with xi E B', xj @ B', for 
j # i ,~we have that 

(3.4) 

where a denotes the boundary. Thanks to equation (3.3), 
form 

is the curvature of a gauge 
of rank d - 1 in Mz Note that -- 

a%,,, = 0 (3.5) 

and 

Equations (3.5) and (3.6) imply that qzx:s is a harmonic form in Me 
In physics terminology, 'px:s is the-cector potential of a magnetic vortex at the point x 

when d=l, while, for d=2, it is the magnetic field of a monopole located at x ,  with magnetic 
charge q .  The curvature of the gauge forms i on ML can be written as f(6) = db + q ~ ~ . ~ .  - 

The expectation value of a disorder field 

is given by 

where 

= 1 D[b] e-%W 

is the partition function [12,13]. 
On the 1.h.s. of (3.8) a multiplicative renormalization is usually necessary. This has 

been discussed for three-dimensional Higgs theories in [lo]. We shall in general omit the 
subscript 'ren'. Formally, equation (3.8) can be interpreted as the expectation value of 

Dk. g) = exp { - [s(db + P ~ : ~ )  - .?(db)]} . (3.9) 

Correlation functions involving D(x ,  - q )  and gauge-invariant functionals of db and b, 
F(db. b), are defined by 
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with qZi4 = d&. 
Equation (3.rO) can be understood'by introducing an action from the left of D(xi ,  ai) . .  

on F(db, b), namely 

D(xi7 qi)F(db, b) E F(db + ~ x , ; y j .  b t G ; q j ) D ( ~ ; ,  4;) .  (3.1 1) 

It is well known that from the Euclidean correlation functions of db(x) (satisfying a suitable 
variant of the Osterwalder-Schrader (OS) axioms) I141 one can reconstrugthe vacunm state 
IO), the Hilbert space E,  the Hamiltonian H and field operators f (e )  = *db(e) of a quantum 
field theory. The relation between the Euclidean field db and the field operator % is given 
as follows. Let xp < x i  < . . . < x:, and define 

(3.12) 

(db(xl)...db(xJ) 3 - I  J'D[b] e-S(db)db(xl). . .db(x,J = ( O l % ( x ~ ) .  . .%(xn)lO). 

(3.13) 

Extending this result, it has been proved in [13], that from the correlation functions of the 
disorder fields (satisfying a suitable version of the OS axioms) one can reconstruct soliton 
field operators $(m) such that, for xp < .. . < x,", 

( D 4 y ) )  = ~ o l i ~ , ~ x , ~ ~ , ' ~ i y " ~ ~ " ~ l o ~ ~  (3.14) 

Similar identies hold for mixed correlation functions involving disorder fields and gauge- 
invariant fnnctionals of d b  and b. 

From equations (3.12) and (3.13) it follows that oneA may consider D(x, q )  as the 
Euclidean field corresponding to the soliton field operator S,(Z) at Euclidean time xo. 

Given a gauge form 6(d-" and a d-dimensional surface Z(d), one defines the 'Wilson 
operator of rank (d - 1)' by 

(3.15) 

where CY is a real number. We observe that if 6@-') is a globally defined form, denoted by 
b, then 

(3.16) 

where &-I) is the boundary, a&), of &d), and War(C(d))  coincides with the ordinary 
Wilson loop when d = 2. On the r.h.s. of (3.15). (3.16) a multiplicative renormalization, 
depending on CY and L(d-11 is usually necessary, but we shall in general omit the subscript 
ken'. The renormalization can be made precise for theories with a quadratic action [E]. 

If Z(d) is contained in a fixed-time (hyper-) plane we shall write Wa(f&)), instead 
of We(&)), and we denote by Ww( .C(d - l l )  the corresponding field operator. The soliton 
operator and the Wilson operator ! k ( L ( d - ~ ) )  satisfy the 'dual algebra' [5, 151 
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By T, we denote translation by E in the positive time direction, and let x = (0.2). 
Then the dual algebra implies the following equation: 

(3.18) 

Let $a and j @  denote the fermion field operator and the current operator reconstructed 
from the correlation functions of Yc, q; and J@(q, W*) in the fermionic theory and 
let &,, denote the U(1) charge operator associated with a d-dimensional surface, C(d). 
contained in the timezero plane; formally 

The fact that $;(I) = $p(z) ,  ($L(z)) c&ies charge +I; (-1) localized at I is 
summarized in the equation 

(3.20) 
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where T(.) denotes Euclidean time ordering. 
We recall that Jo(Y ,  Y*) is represented in the bosonic theory by &;(*db)O. Comparison 

of (3.18) and (3.20) then shows that the insertion of Ye@), Yz(x), in the fermionic theory 
implies the insertion of the disorder field D(x,  1). D(x ,  -1) in the bosonized theory. In 
many examples we have a more explicit relation, namely 

YW(x) = D(x.  1)Fa(x; b) Y:(x) = D(x ,  -1)3&f(x; b) 

where &(x;  b )  is a functional of b that has been determined in (1 + 1)-dimensional theories 
(see section 4) and in some (2 + 1)-dimensional ChemSimons theories [17]. 

Hence, fermion fields in the bosonic theory are 'proportional' to disorder fields, and 
fermions can be viewed as solitons of the bosonic theory. 

There is a class of models where therelation between disorder fields and fermion fields 
can be made more explicit. Consider a system of fermions with an action I(Y, Y*), 
perturbed by a current-current interaction (2.22). We denote by ((.))" the Euclidean 
expectation value of the perturbed system and by ( ( . ) ) A  the expectation value corresponding 
to the unperturbed gaugeinvariant action I(Y, Y', A) .  Suppose that the fermion correlation 
functions are expressible through a formula 

(T(Y~,~xl~'~'Y~"~x~~Y~"+~~x~+l~'~~Ya~~x~~))A = J df i  z:g ( J ( 1 ) )  ,i(A.J) (3.21) 

where dpGg(J('))  is a measure on the space of I-forms J ( ' ) .  The transformation property 
under U(l)-gauge transformations of the fermion fields, implies that df i (J ( l ) )  is supported 
on forms satisfying 

x exp (& / A  A d b )  
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(3.24) 

The r.h.s. of (3.24) has the desired form of an expectation value of a disorder field. 

Remark 4.2. The representation in (3.21) of correlation functions of fermions, holds, e.g., 
for a system of free non-relativistic fermions with chemical potential p, at temperature 
T. The measure in (3.21) is defined as follows: let 0 = (q, . . . .U,,) denotes a set 
of (Brownian) paths joining x = ~ ( X I ,  .~. . , x.) to y = . [xx.+l ,  . . . , x h ) ,  and let ry = 
@ I ,  . . . , a"}, S = {an+l. . . . , ah}. Formally we set 

- 

Then 

(3.25) 

(3.26) 

where C, is the group of permutations of n objects, o(n) is the signature of i~ E C,, 0 
denotes the Heaviside step function, m the mass of the particles and f l  = &, where k is 
the Boltzmann constant. For a derivation of this formula see [16]. In [17] the factor (-1)'k 
was erroneously missing. A similar formula for relativistic, massive, spin-; fermions can 
be found in [18,19]. 

To conclude this section we recall an interesting relation between Wilson loops and 
disorder fields, namely the 't Hooft duality 151. Let E& denote a d-dimensional ball 
of radius R in the Euclidean time-zero plane, let LGMI) aE& and let W=(L&')) be 
the corresponding Wilson loop of rank d - 1. Then the 't  Hoof! duality is the following 
conjecture, verified in many concrete models. If, for any c > 0, (Y # 0, 

exp (cP&I) W&)~ + 0 ~ 
as R + 00 (3.27) 

where ILl denotes the volume of L, then the expectation value ( D ( x ,  1: y .  -1)) of the 
disorder field D(x,  1; y ,  -1). (with x ,  y in the time-zero plane) has decay slower than 
exponential in (x  - y ) .  If, for some c < 00, 

C W d ~ & , ) ) )  2 exp (-clL&l)l) as R -+ 00 (3.28) 
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i.e. the Wilson loop has perimeter decay or slower, then either ( D ( x ,  1; y - 1 ) )  has 
exponential decay in ( x  - y), or the density, *(db)O, correlation functions have a gapless 
mode. 

There is also a criterion fof the existence of a global U(1)-charge. In the Euclidean 
formalism the charge operator Q for the bosonic theory is defined by the following (weak) 
limit: 

(3.29) 

The denominator is needed in order to ensure that the charge (if it exists) annihilates 
the vacuum IO). A heuristic criterion for the existence of the limit in (3.29) is that 
(O~@c(L$-,))~O) = (W,(L&,,)) have, at most, perimeter decay. This criterion has been 
proved to be correct for many lattice gauge theories [20].  We propose to extend this criterion, 
as well as the ' t  Hooft duality, to systems of condensed matter physics in the bosonized 
representation developed in this and the previous section. 

4. Relativistic massless fermions in d = 1 

In this section we show that the construction outlined in sections 2 and 3 reduces to ordinary 
Abelian bosonization [21] if I(*, Y*) is the action of massless free D i m  fermions in d = l .  
Although we do not pretend to have any new results, we feel it is useful to illustrate the 
general theory described in sections 2 and 3 in this simple situation. In fact, our discussion 
sheds some new light on the principles underlying bosonization in two dimensions. 

We start by recalling the main formulae of Abelian bosonization. Let y' .  i = 0, 1,5 
be two-dimensional Euclidean Dirac matrices, identified, in the chiral basis, with the Pauli 
matrices U*, U ! ,  us. The Euclidean Dirac operator is given by 

a = Yoao + yi ai 

and the Euclidean action of the massless Dirac field is given by 

I(*, 'P*) = d2x Y:gY,(x) (4.1) J 
where Ye, Y: = 1 , 2  are two-component Grassmann fields. 

The Euclidean action for the massless, relativistic, real scalar field, 0, is given by 

The simplest bosonization formulae, proved by direct computation, are the following: the 
Euclidean correlation functions of P(q,  Y*) = : Y * y W  : and : Y * y Y :  ,normal 
ordered in the fermionic theory, are identical to the Euclidean correlations of &+a"@ 
and : eLi': , normal ordered in ths bosonic theory. The normal ordering chosen in the 
bosonic theory can be characterized formally by 

. eiuO(r) ._ .- @a(x)(2JI)az  exp (hru~h-i(x, (4.3) 
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where A-'@, y) & In [x - yI. (For a rigorous definition one' uses a point-splitting 
regularization.) 

One can also give explicit bosonization formulae for the fields V and V*. The formulae 
for the above bilinear expressions then follow by taking limits [22]. We briefly recall some 
details of the result. 

One first constructs the corresponding closed I-form (4.2), qxy;q,e! = &,2 and the 

for 6r,y as the multivalued function 

L e t & =  1x1 ,..., x,J,y = { y l  ,..., ynI , ' q=  lqi l~=I .~ '=Iqj) l , l=l ,qi  =-1,qj) = + l .  
-- - corresponding rank-0 gauge form &.y;q,q, - = 6K,r. One can give an explicit expression __-  

-i 

where arg x, x E R2 denotes the argument of ixo +XI .  

According to definition (3.8) the expectation value of the disorder field is given by 

To give the explicit form of the renormalization, notice that the term quadratic in qz -.- in 
:(d@ + q& is logarithmically divergent: formally 

A multiplicative renormalization is then necessary, as mentioned after equation (38, to 
eliminate the terms with coinciding points in (4.6). This can be done as follows: let S&) 
denote a small ball of radius 8 around x, and set 

(4.7) 

We define a regularized action by 
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where the second equality follows from the Hodge decomposition (in a space with 
Hd,,(M) = 0). In d=l the field b") is just a scalar real field denoted by a. From 
equations (2.11)-(2.14) and (4.14) it follows that 

(4.16) 

Hence, the action of b(O) = 0 coincides with (4.2). Next, we consider the fermion 
correlation functions. We note that, at non-coinciding points, the contributions coming 
from the left movers \UL Wz, q; '4; 
factorize, so that one can simply consider correlation functions of right movers. Correlation 
functions of left movers are obtained by complex conjugation. The explicit expression of 
the correlation functions of free fermions in d=l in the presence of agauge field A is given 
by the equation (see [24]) 

'YI, 'P; = W; and the right movers W, 

(T (q; (XI ) . ' ' % (xn) % (Y!) ' ' ' % (Yn ) ) ) A  

dZz [isA-'A(z) - 'dA-'A(z)] 

(4.17) 

We now combine equation (3.23) with (4.14) and (4.17) and, recalling equation (3.6), 
we obtain that 

+ v ~ . ~ ) .  V * W  + 'P~,~)) 

(4.18) 

Integrating out A, using the explicit form of &, equation (3.2), and the Cauchy identity - . 

(4.19) 
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and recalling equations (4.4), (3.10) and (3.11), we obtain that 

J Frohlich et a1 

(T(%(Xl) " ~ W Y n ) ) ) "  

= a(v)- '/DO exp(-8ri(d@.dQ,) 1 

where we used the formal definition o f  normal ordering, equation (4.3). 

we proved that one can identify b(O1 with the bosonic field Q, of Abelian bosonization. 
This is exactly the result of the standard Abelian bosonization, equation (4.1 1). Hence 

5. Condensed matter systems 

In this section we discuss some applications of bosonization via gauge forms to fermionic 
systems of condensed matter physics. Let us start by defining the 'scaling limit' S*(A) of 
an effective action S(A) .  We replace the gauge potential A by a rescaled potential 
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The 'scaling limit' F ( A )  is defined as the coefficient'of the leading term in an asymptotic 
expansion of S(A'") around h = 03 (see [l] for a more complete discussion). 

Similarly, given a function f (x), we define its scaling limit, f ' ( x ) ,  as the coefficient 
 of the leading term in an asymptotic expansion of f ( h x )  around A = W. 

Remarkably, all many-body systems of non-relativistic fermions that can be treated 
analytically seem to have the property that S*(A)  is quadratic in A.  Here we describe some 
examples. 

F. 
is given by 

We start with the free non-relativistic fermion gas. The Euclidean action of the system 

(5.2) I 1 I(Y, Y*) = d"+'x 'P*ao'P + -(VY)*+ NY*Y (x) S I  2m 

where in is the mass of the fermions and p the chemical potential. 
In d=l, the Fermi surface consists of only two points, i k f .  Since the scaling limit 

is dominated by excitations with momenta close to the Fermi surface, one expands the 
momentum-space fermionic two-point Green function around the points k k f  on the Fermi 
surface, in order to calculate its scaling limit. 

The result of this analysis is that, in the scaling~limit, one can introduce quasiparticle 
fields YL, Y: and YR, 'Pi corresponding to the points kF and kf, respectively. Then YL, YE 
are the fields describing left-moving excitations, while YR, describe right movers. These 
excitation approximately obey a relativistic dispersion relation, 0 x IpI, where w = E - EF 
and p = k - kf. The original field variable 'P(x) is related to the relativistic field variables 
Y&) and YR(x) by 

(5.3) ' P ( x )  2: exp (-ikfx') YR(x) + exp (ikfx') YL(x). 

The Euclidean action of YL and YR is given by 

Y;, YL, Y;) = S d 2 x  { ~ g ( a o  + iufa1)YR + I V ~ C ~ O  - iufal)wL~(x). (5.4) 

The action (5.4) is the Euclidean action of free massless Dirac fermions, with the 
Fermi velocity U F  playing the role of the velocity of light. As a consequence the effective 
action S*(A)  determined by the action (5.4) is quadratic in A; see section 4. Using the 
bosonization method of section 4, one obtains a quadratic action for the potential b" = 0 
of the conserved U(1)-current, see equation (4.16). These features of one-dimensional 
systems have been known for many years [25]. 

More recently, it has been realized (see [26] for the original observations) that similar 
ideas-on the scaling limit can be used in any dimension d .  The sum over the two points of the 
Fermi surface in (5.3) must be replaced by an integration over a higher (d- 1)-dimensional 
Fermi surface; see [27]. 

are 
denoted by w. The extension of formula (5.3) to higher dimensions in given by 

Let n be the (d - 1)-dimensional unit sphere in momentum space. Elements of 

Y ( x ) = l d ~  exp(ikFzC.W)Yw(x) (5.5) 

and the Euclidean action for the fields W,, describing the scaling limit of the free Fermi 
gas can be given formally as , 

dd+lx i q a 0  + iuFw. V) exp (-a(w A v)~)  w ~ } ( x ) .  (5.6) 
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where a! is a positive constant. 
It is shown in [2] that S’(A) is obtained as the integral over the set of directions f w 

in momentum space of contributions coming from the degrees of freedom described by the 
fields Yu and Q-,, corresponding to antipodal points, f w ,  on the Fermi surface. Every 
such contribution just corresponds to the contribution of a one-dimensional free fermion 
system and is quadratic in A, = (Ao, w . A). Since S’(A) is the integral of the one- 
dimensional actions S*(A,) over all pairs of points k w  in Q, it, too, is quadratic in A.  
Technical details of this calculation will appear in [Z]. These considerations yield an explicit 
expression for S’(A). Let lTw”(x, y) denote the vacuum polarization tensor of a system of 
non-interacting fermions at zero temperature, and let p ( ] )  = pdxO, where p is the density 
of the system, then: 

S ( A )  = +(A, ~I*A) + i(p(’), A ) .  (5.7) 

By invariance under U(l)-gauge transformations, translations, rotations and parity, the 
expression for W” is given, in momentum space, by 

k“ 
ko 

n io (k )  = -nIl(k)- 

k2 
IIoo(k) l l [ [ ( k ) T  

k0 

for i, j = 1, . . , , d.  The explicit form of lli in d=l is given by 

(5.9) 

and, in higher dimensions, to leading order in IuFk/kol and Iko/uFkl, we have that 

where KO, ho, 20, XI, hr are constants depending on d, m and VF [29]. 
According to the argument given before, the expression for lT* in d > 1 can be derived 

from the integration over w of one-dimensional vacuum polarizations, n,, relative to the 
‘quasiparticle fields’ Y,, q-, 

(A, n’A) = 4 dw (A,, rI,A,). s, 
Let us stress again that the quadratic nature of S’(A) does not just follow from a ‘small-A’ 
approximation and dimensional analysis, but it is the result of explicit cancellations arising 
from the structure of the fermion two-point function’in the scaling limit. 
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Remark 5.1. One can directly bosonize the scaling-limit action of the free Fermi gas 
expressed in terms of the 'quasi- particle fields' (qO, q;], w E a, by introducing real 
scalar fields {QO), w E a, identifying 40 with The result is the Luther-Haldane 
bosonization [26,28], in the Euclidean path-integral formalism. From section 4 one can 
derive an explicit expression for the fermionic fields qO, '4: in the bosonized theory. With 
obvious notation, we have 

q l O ( x )  --f ( ~ ) - + D ~ ( X ,  -1) : exp * - ~ ~ ( x )  : ( 1  ) 
From now on we omit the trivial term i(p('), A) in the effective actions. This corresponds 
to redefining the density Jo(Y ,  V) by subtracting the background density p. Furthermore 
we set UF = 1. 

I .  Insulators and incompressible quantum fluids form another class of fermionic systems 
whose (bulk) effective action in the scaling limit, S'(A), is quadratic in A. Here 
incompressibility means that the connected correlation functions of the current P ( W ,  V*) 
have cluster properties better than those encountered in systems whose largescale physics is 
dominated by Goldstone bosons. From incompressibility it follows [l] that S'(A) is local, 
and, for systems, with translation, rotation and parity invariance, it is given by 

S*(A) = I 2 d"+' x (gE(dA)O'(dA)Oi(x) + gs(dAYj(dA)ij(x)} (5.11) 

where gE, gs are constants. 

H. The quantum Hall fluids are parity-breaking, two-dimensional incompressible systems. 
For Laughlin fluids with translation and rotation invariance, it has been shown in [l,  31 that 
S* is the ChemSimons action 

(5.12) 

where UH is the Hall conductivity, uH = &, 1 = 0,1,2,. . . . . 

S. 
BCS superconductors is also quadratic and is given by 

London theory and computations based on perturbation theory suggest.that S*(A) for 

(5.13) 
1 + d"+'y (Ao - aoA;'ai.i')(x)n,(x - y)(Ao - aoA;'ajAj)(y) J 

where h ~ , i s  a constant (the London penetration depth) 
. .  

AT = Ai - aiA;'aiAj , (5.1,4) 
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with i. j = I ,  . . . , d ,  Ad denotes the d-dimension Laplacian and ll, is the scaling limit of 
the scalar component of the vacuum polarization in the superconductor. 

To leading order in Ik/kol and Ikolkl, llS in d > 1 is given by 

(5.15) 

where xs is a constant depending on d ,  m,  IJF 1301. The scaling limit effective actions of 
the systems F, I, H, S given by equations (5.7) and (5.11)<5.13) yield a bosonized action 
of the form 

(5.16) 
1 

8x2 
S*(db) = - ('db, (iT)-' ' db)  

where, in the notation of (5.8), n' is given by 
F equations (5.9), (5.10) 

I S :  n;(k)  = l l , (k) l l;(k) = - 
1; ' 

If ll has the form (5.8) then one finds 

dd"x dd+'y [ (*db)'(x) [ (ll* J -' ' ( s i j  - ai~.;laj)cn;)-+] ( x ,  y )  

x ( * d b ) j ( y ) } .  
In particular, in d = 2 b is a I-form and (5.18) simplifies to 

(5.17) 

(5.18) 

( l l ; ) - ' (k )k2  (bo - k O F )  k . b  + (l l;)-'(k)k2(bT)'} . (5.19) 

For Laughlin fluids, the dual action is given by 

(5.20) 

5.1. Dual@ in two-dimensional systems 
Note that, in two space dimensions, A and b are one I-forms, and from equations (5.7), 
(5.10), (5.11). (5.13), (5.16). (5.17), (5.19) and (5.20) it follows that the actions S'(A) and 
S*(db) are related by a remarkable 'duality': 

S'(b)li *(db)ls 

S*@)ls a S*(db)li (5.21) 

S*(b)IH c( S*(db)lH 
with (gE, gB) corresponding to (A;, x;'), and U" going to 0;'. 

In particular, since S'(A)[r is the Maxwell action, it follows that S'(db)ls describes 
a massless mode, the Goldstone boson of the superconducting state with broken gauge 
invariance, known as the Anderson-Bogoliubov mode. By the Kramers-Wannier duality, 
this mode can also be described by an angular variable which is a free field. 
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5.2. Disorderfields for Laughlin fiuids 

Some care is needed in defining the disorder fields whose expectation values are proportional 
to fermion Green functions of Hall fluids in the scaling limit. In fact, the naive definition 
guessed from (3.9), (3.10) 

does not make sense, since CG4 and $ are not well defined 1-forms on M, = R*+'\{x}. In 
more mathematical terms, one5bserves that the definition of the Chern-hons action for 
connections 6'on a non-trivial bundle A' (see the appendix) requires the specification of a 
reference connection 60 E A'. With b = (l - 60) s'A1(ML), - .  the Chern-Simons action is 
given by [9] 

Scs(b, 60) = 1 b A d b  + 2b A f(&). (5.22) 

(In what follows we adapt the procedure of [lo]. where a more detailed discussion can 
be found. With obvious modifications, our construction can be extended to more general 
ChemSimons gauge theories.) 

In order to define the disorder field proportional to a 2-point fermion function, we choose 
$0 as,follows: let E* denote a 2-form in W2 with support in a cone C , with apex at 0 and 
contained in the positive-(negative) time half-space, satisfying 

dE" = *So (5.23) 

and denote by Ex its translation by x .  
in the negative- 

time half-space, with xp < xi",,, and for a set of charges, 41,. . . ,qz.  with xi=, qi = 
0, Iqil = 1, we define io = Cx.9:i  by 

Then, for X I ,  . . . , xz in the positive-time half-space and x,+1, . . . , 

zn 
f (G:& vS5& = qi Ex + gjE (5.24) 

and assume that the cones {CL} 'join at infinity', (see [IO]). Since ML has a boundary, [&I, 
Scs(b. LO) is not gauge-invariant and we need a compensating term in the action to restore 
gauge invariance; this term is obtained by adding to qZ5g a two-form jZi9 which is a sum 
of dual currents with support in a set of straight lines joining each point xz to its projection 
on to the timezero plane, (0, zi) and carrying charge qi. The expectation value of the 

t=l j=r+ l  

disorder field, D&, - q,EJ,  is defined by 
~~ 

otherwise. 
(5.25) 
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One can think the support of jx:q -_  as representing the Euclidean worldlines of static 
fermions created (destroyed) at the boundary points xi where qi = -1  (+l); since the 
electric flux is conserved by gauge invariance, the electric flux lines spread at the end 
points x in shapes described by the distributions Ex.  

The result of integration in (5.25) is the following: let ax,,;a be a I-form satisfing - 

daL+& = jr:% + vGP:a (5.26) 

then 

(5.27) 

If the cones [CJ are shrunk to non-intersecting paths [y,) and we denote the 
corresponding 1-form by E ,  then dol,.,,;, is dual to an oriented link 
and S~(cu,,,,) gives the Gauss linking~number of that link. 

From thTFobservation one deduces that, for a Laughlin fluid with U” = 1/(2( + 1). 
e =  0,1,2, . . . , the particles described by the Green functions (D(x ,q ,  are fermions, 
because if two arguments, xi and x j ,  with qi = qj are interchanged by asmooth deformation 
of the paths yxi and y., then (D(11, - q.&)))* changes sign. 

instead of 
2- - - -1- 

6. Adding perturbations: some applications 

Let us perturb the ‘reference’ systems F-S by a density-density and/or current--current 
interaction described by a perturbation term in the action, rPn(Y, Y*) given by equation 
(2.22) with V = (V,,”) positive-definite. Furthermore let us make the following perturbative 
assumption. 

Assumption P. 
of the scaling limit of the original theory. 

The scaling limit of the perturbed theory coincides with the perturbation 

Adopting definition (2.19), the bosonized action of the perturbed theory in the scaling 
limit is given by 

1 
879 

qM(db)  = -(‘db. (rI*)-’ + V’)’db) (6.1) 

provided asssumption P holds. From (5.18) one derives, for example, that the two-point 
function of charge densiry and current in the scaling limit is given by 

(J,,(V, v*; X ) J ” W ,  q*; yN* = 4 2  ((n*)-l + v*,;: (x, y) . 
Perturbing the free theory, F, equation (5.19) reproduces the result of the Euclidean 

RPA approximation in the scaling limit. This proves that, under asssumption P, the RPA 
approximation gives the (leading term in the) scaling limit of density and current correlation 
functions. Using the form (5.6) of the action for a system of free fermions, one can argue 
that asssumption P holds for two-dimensional systems, provided there are no interaction 
between electrons at antipodal points of the Fermi surface, i.e. provided that the ‘Cooper 
channel’ is turned off. 

(6.2) 
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6.1. Plasmon gap and Anderson-Higgs mechnnism 

Equation (6.2) is useful for understanding the phenomenon of ‘mass generation’ via Coulomb 
repulsion:, if one perturbs a free Fermi gas or a BCS superconductor in two or more 
dimensions ~A by (d-dimensional) repulsive Coulomb two-body interactions, with V given 
by V&) = e21kl-2, and V,, = 0 otherwise, then the Fourier transform of the density two- 
point function has quasiparticle poles at ko = i i M ,  M > 0, as lkl \ 0. (For perturbations 
described by a two-body potential Vw(z) decaying faster than the Coulomb potential, the 
denominator of the two point function in Fourier transform vanishes, as k, ko 0). 

For a perturbation of~the  free theory, F, M is the plasmon gap. The fact that M 
is strictly positive, has been interpreted in [31] as the result of a ‘generalized Goldstone 
theorem’ applicable in the presence of Coulomb forces. 

For superconductor,a similar phenomenon has first been analysed by Anderson [32]. 
From (6.2) and (5.10), (5.15), and for V, = e2/lkl2 one obtains 

where M = e’fc. c = 2;’ for F, c = A i 2  for S. 
As remarked above for the perturbations of a system of free electrons satisfying 

asssumption P, the RPA approximation~is exact in the scaling limit. This explains why the 
RPA value of the plasmon gap coincides with the exact value obtained by a non-perturbative 
analysis in [31]. 

For the superconducting theory one can go one step further then if one uses a form 
for il; i7, that correctly interpolates between the behaviour at small Ik/kol and at large 
Ik/kol described in (5.15). namely 

The vacuum polarization tensor il,” defined in (5.8), with ll, = n; and no = n; = 
i7, as in (5.17), (5.15) describes a superconductor in the scaling limit as system of non- 
interacting, massless U(1) Goldstone bosons. Taking asssumption P for granted, we now 
wish to study the effect of two-body Coulomb repulsion on the quasiparticle spectrum of a 
superconductor. 

Let us first do the calculation for a two-dimensional system. By equation (5.19) the 
action .?&(db) is then given by 

where lip’ is given by (5.8), with 
. _  - 

f i l=A~lklzx ; lk~+eZ i loo=Atk2.  (6.6) 

From these formulae we lean that bT describes a massive quasiparticle, with a dispersion 
relation given by 

w(k) = Jxs(A2 L I  k I * +e2). (6.7) 

These formulae can easily be generalized’ to systems in d dimensions, with d > 2. The 
result is the same: the theory describes one massive quasiparticle with a dispersion relation 
given by (6.7). This can be seen by recalling (6.2) with VP”(k) = S”oSVOe2/k2. 

The phenomenon described above is the Anderson-Higgs mechanism. 
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6.2. The existence of the charge operator 

Another issue that can be analysed, using equation (6.2), is the existence of the charge 
operator (see section 3). Consider a Wilson loop of rank d-  1. W.(L&,,). with Ll;-,,= 
ax:,. Then W&&,)) determines an operator proportional to exp(iar&(C$,)). where 
&(C$ measures the charge contained in the region Cg,; see equation (3.37). 

Using equation (6.1) one obtains 

For V = 0, straightforward computation gives 

(exp(-clt~-,,llnR) forF 

.... , " R  

for some positive constants (denoted by c). 
Hence, according to the criterion of section 3, the charge operator i! does not exist for 

free systems of fermions and for superconductors. Charge density fluctuations are so strong 
that the limit (3.29) does not exist. For insulators or quantum Hall fluids, equation (6.9) 
implies instead the existence of the charge operator which, at zero temperature, defines a 
superselection rule. 

According to the 't Hooft duality one expects that the two-point disorder correlation 
functions of the bosonized theory, for systems F and S. have at most power law decay in 
spatial directions, while, for systems I and H, they have at least exponential decay in spatial 
directions. Since the fermion fields q, I' are proportional to disorder fields, one infers 
that, for systems I and H, the two-point fermion Green functions exhibit at least exponential 
decay in spatial directions. 

If we add a short-range density-density perturbation, V&) = constant > 0, for 
Ikl x 0, then under asssumption P the results do not change for the perturbations of systems 
F, I, S; for perturbed quantum Hall fluids, we obtain a perimeter decay for (W&&))+. 

If we add a long-range density-density perturbation, with Vm(k) = glk[-', g > 0, 
0 < 01 g 2, we obtain perimeter decay also for the perturbed systems of F and S. 

6.3. The orthogonality catmtrophe 

In this last subsection we discuss in s.ome detail an application of our formalism to the 
problem of the 'orthogonality catastrophe' for static sources in a Landau-Fermi liquid 
perturbed by a repulsive densitydensity interactions. 'Orthogonality catastrophe' just means 
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that the ground state of the system is orthogonal to the ground state in the presence of a 
static source, i.e. their overlap vanishes [33]. 

For d z 1 ,  we have the following heuristic picture: the injection of a static source 
triggers the production of a number, divergent in the thermodynamic limit, of particle-hole 
pairs of arbitrarily low energy near the Fermi surface, and this leads to the orthogonality 
catastrophe. An infinite number of particle-hole pairs is produced because there are infinitely 
many degrees of freedom in the vicinity of the Fermi surface. Hence in one-dimensional 
systems, a different mechanism must be responsible for the orthogonality catastrophe. In 
fact, for d=l,  the density-density interaction drives the system away from Landau liquid 
behaviour, and the orthogonality catastrophe can be related to the vanishing of the wave- 
function renormalization characteristic of Luttinger liquids [34]. 

We now show that under asssumption P our formalism leads to a clean proof of the 
'orthogonality catastrophe' in  all dimensions. Our proof shows that the term responsible for 
a vanishing overlap is largely insensitive to the structure of the densityaensity interaction 
in d > 1, but it strongly depends on the behaviour of the interaction, as the momentum 
I&\ 0, in d=l. 

We start by analysing how one can express the overlap between the ground states in the 
path-integral   formal ism. 

Let H ( J )  be the Hamiltonian of the fermionic system in the presence of a static source 
J .  Assume that the bottom of the spectrum of H ( J )  is given by an eigenvalue, Q J ) .  
corresponding to the energy of the ground state, 10)~ in the presence of the static source. 
Denote by 10) the ground state of the Hamiltonian H of the fermion system. Then we have 
that 

lim (Olexp(-t(H(J) - E ( J ) ) )  10) = I(O10)r12. (6.10) 
1-m 

This suggest that 

(6.11) 

and, indeed. equation (6.11) can be proved, provided the limit on the 1.h.s. exists. 
A standard application of the Feynman-Kac formula proves the equality 

(Ole-rX(')IO) = E ( J ~ )  (6.12) 

where E(Jr) is the (grand-canonical) partition function of the system in the presence of a 
current described by a I-form Jr given by 

JS(z)dxo 0 < xo < I 
0 otherwise. 

Jt@) = 

Equation (6.11) then gives 

(6.13) 

(6.14) 

Using an interaction term of the form (2.22) we conclude from equations (2.23) (with the 
notation of section 3) and assumption P that 

E(Jr) = VY VY* exp ( -  [S(", Y*) + ((TW, Y*) - J r ) ,  V(T(", **I - J r ) ) ] ]  
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and the scaling limit of &(J,) is given by 

(6.15) 

We now specialize (6.15) to a potential V describing a timeindependent, rotation- 

v;m = ~ ~ V & O ~ O ~ I ~ l ~ ~  (6.16) 

invariant density-density interaction. The Fourier transform of V is then given by 

We assume that 

Vo(lkl) - IkV (6.17) 

with 0 < LY < 2. Inserting equations (6.16) and (6.13) into (6.15), we obtain that 

Using the explicit form of FI;, equation @.lo), in d > 1, we conclude that 

where A is some ultraviolet cutoff. 
The second term in (6.19) is easily bounded uniformly in t .  In the first term we define 

(6.20) ko 
Y jq xo(lkl)  = xo + Vr' ( lk l )  

and we rewrite it as 

(6.21) 
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where ci and si are the cosine integral and the sine integral functions, respectively. Hence, 
as t ,? 00, we have a contribution linear in t ,  a contribution logarithmic in t and a finite 
correction. According to equations (6.14), (6.19) and (6.21). the overlap in d > 1 is given 
by 

Equation (6.22) proves the orthogonality catastrophe in d > 1. If one analyses where the 
vanishing of the overlap (6.22) comes from, one realizes that it is due to the term 

(6.23) 

in II;, i.e. it originates from the region in the spectrum (low ko, low Ikl, ko < Ikl), where 
particle-hole excitations near the Fermi surface dominate the large-scale physics. If one 
omits the term (6.23), one can check that the overlap (0lO)~ becomes finite. The term 
in B(J,)* responsible for the vanishing overlap in d > 1 is essentially independent of 
the specific structure of the interaction Vo(lkl) at low jkl, since, to leading order in Ikj, 
V;'([lel) gives a contribution negligible with respect to ,yo, for an interaction with a > 0 

Next we discuss the overlap in one dimension. Using the expression for no in d = l ,  
(equation (5.9)), we obtain 

- l n W z Y  -lrdrlrdsS - -SA's dkl (ki + k:) COS kos ~ 

52 - A  2~ -A' 2x (ki + k?)V;'(ki) + Xok: 

- 4 (1 - e x p ( - ~ k l l ( l + x 0 V o ( k ~ ) ) ~ 2 t ) ) ] ] .  

(6.24) 
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In contrast to the result in d > 1, the way the limit (6.25) approaches 0 as t /' 00 depends 
on the specific structure of Vo(k1). For example, if 

Vo(ki)k,,-oglkil-a f > 01 > 0 g 0 (6.26) 

then 

where c(01) is a positive constant. If 

Vo(ki)k;=og > 0 

then 

(6.28) 

(6.29) 

The behaviour (6.29) is characteristic of the Luttinger liquid [34], and, in general, (6.25) 
suggests a non-Fermi liquid character of the system. 

Remark 6.1. 
by extending the form of no in d=l to higher dimensions, i.e. 

If, instead of using the true no given in equation (5.9), we use a f i o  obtained 

(6.30) 

then one recovers the results of [35]. 

Remark 6.2. If, in d > 1, we compute the partition function, B(J:) ,  of the system in 
the presence of a current, J Y ,  describing the motion of a source with constant (Euclidean) 
velocity v in a fermion system with transverse current-current interactions, given by: 

(6.31) 
l o  otherwise 

with V,(O) # 0, then, using (6.15), we obtain that 

x exp (i(k . v + ko)(xo -yo)) . (6.32) I 
To leading order in Ik~/k l ,  for Iko/kl < 1, we derive from (5.10) that 

n o ( k )  = xo + ho - . I:l k ( k )  = X L I ~ I '  + hi - I?l 
Hence, for = 0,, IC \ 0, i7, vanishes as Iklz,whereas no remains finite. As a 
consequence, in contrast to density-jensity interactions current-current interactions in d > 1 
may significantly change the behaviour of E(JY)', suggesting +at Fermi systems in d > 1 
with long range current-current interactions could show non-Fermi liquid behaviour. 

In a two-dimensional system with CoulombAmp5re current-current interactions, 
a non-Fermi liquid ('Luttinger') behaviour has been exhibited within the eikonal 
approximation [36] (see also [37]). 
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Appendix. Gauge forms 

In this appendix, we introduce the concept of gauge forms of rank k,  or generalized U(1) -  
connections of rank k [7,81. For k=l, it coincides with the standard concept of a U(l)-gauge 
field or, in mathematical languase, of a U(1)-connection. 

Definition. Let M be an open subset of Rd+' and let U = (U; ) i E r  denote a covering of M 
by open subsets. Then a gauge form of rank k,.6Ck), is a collection of k-forms [a,(")]ic, on 
LI such that 
( 1 ) f o r x e U ; n U j  

(k) (A. 1) 

with i$y E Ak(Ui nuj) a closed form with integral periods (i.e. its integral over an arbitrary 
closed k-surface contained in U; n Uj is an integer). From (A.l) it follows that 

(k) (k) ai ( x )  - a, ( x )  = zij (x)Zn 

da(K'(x) = daf)(x) ( A 4  

for x in U; n Uj and hence (da,(")]icr defines a'closed (k + 1)-form, f@+') (c i ) ,  on M .  
(2) For every closed (k + 1)-dimensional surface, S(k+l), in M ,  f"+"(2) has the property 

The form f (k+l)(Z) is called the curvature (or field strength) of Z@). The space of gauge 
forms of rank k is denoted by .Ak. 

Remark A.1. From the definition it follows that a gauge form of rank k > 1 can be seen as 
a generalization of a U(l)-connection (called a generalized U(1)-connection of rank k) on 
a principal bundle, Pa, whose transition functions are given by the (k - l)-forms 
This bundle is called a U(l)-fibre bundle of rank k, and dk = d k ( P k )  is the space of 
U(1)-connections of rank k on P k .  By equation (A.ll), the difference of two connections, 

Z'(k) E dk(Pk) ,  is a globally defined k-form, i.e. Z ( k )  - 2'" E A k ( M ) .  Hence, dk is 
an affine space modeled on A k ( M )  i.e. 

dk = Z(k)  + A k ( M )  ;@) E dk. (A.4) 

Two U(1)-fibre bundles of rank k ,  P k ,  PIk characterized by the transition functions 
{ A L j ] ,  (Ai,], are said to be isomorphic if 

for Ay-" E Ak-'(UJ,AY-ll E Ak-I(Uj),  and <$-I) E Ak-'(Ui n U,) is a closed form 
with integral periods. An isomorphism class of U(1)-fibre bundles of rank k is called a 
U(l)-bundle of rink k. If M is k-connected, the U(1)-bundles of rank k are classified by 
Xk+l(M, Z), which is isomorphic to the subgroup of X:&'(M) given by the cohomology 
classes of (k + 1)-forms of integral periods. The classification map associates to a bundle 
the cohomology class of &f(k+"(ci), where $) is a connection on the bundle 181. 
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The space of gauge forms, dk, canies an action of the gauge group G k - ] ,  whose 
elements, i(k-'), are collections [ k y - ' ) ] ~  of (k-1)-forms, with the following patching 
property: 

- A y ( x )  = <!!-I'(x)zx ' I  (-4.6) 

for x E U, n Uj, with $I) closed of integral periods. 
The action of @--' on dk is given by 

ay' 4 ay' + dAjk-1' . 

Note that if HL,(M) = 0, then 

G ~ - I  N A ~ - I ( M )  

i.e. Lek-') is determined by a globally defined (k-1)-form, A*-'). Furthermore if H&'(M) = 
0, or, more generally, if the cohomology class of f'+'(rT) is zero, then 

dk Y A k ( M )  (A.% 

i.e. one can view r T C k )  as a globally defined k-form a('). 
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